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Abstract

Spatial adaptation procedures for the accurate and effi-
cient solution of steady and unsteady inviscid flow problems
are described. The adaptation procedures were developed

and implemented within a three-dimensional, unstructured-

grid, upwind-type Euler code. These procedures involve
mesh enrichment and mesh coarsening to either add points

in high gradient regions of the flow or remove points where
they are not needed, respectively, to produce solutions of

high spatial accuracy at minimal computational cost. The

paper gives a detailed description of the enrichment and

coarsening procedures and presents comparisons with ex-

perimental data for an ONERA M6 wing and an exact so-
lution for a shock-tube problem to provide an assessment

of the accuracy and efficiency of the capability. Steady and

unsteady results, obtained using spatial adaptation proce-

dures, are shown to be of high spatial accuracy, primarily in
that discontinuities such as shock waves are captured very

sharply.

Introduction

Considerable progress in developing methods of dy-

namically adapting computational meshes based on the nu-

merical solution of partial differential equations has been

made over the past decade) These methods are being de-
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veloped to produce higher spatial accuracy in such solutions

more efficiently. Spatial accuracy is obviously important

when modeling continuous equations with a discrete set of

points. It is generally understood that accuracy is improved

when the number of mesh points in a fixed computational
domain is increased. Associated with an increase in the

number of mesh points, however, are increased computer

run times and memory costs. Hence, for efficiency, it is

. important to enrich meshes locally based on the numerical

solution, in contrast to using globally fine meshes, to min-

imize the total number of mesh points and hence minimize

the cost for a given spatial accuracy. The methods of mesh
refinement can be separated into three general categories:

(1) mesh regeneration, (2) mesh movement, and (3) mesh
enrichment.

The first method, mesh regeneration, places the work

of adapting the mesh on the mesh generation program rather
than on the actual numerical solution procedure of the gov-

erning equations. In this method, a solution is first obtained,

and regions of relatively large discretization errors are de-
tected. A new mesh is then generated to concentrate points

in regions where the large discretization errors occur. This
new mesh may contain more or fewer points than the orig-
inal mesh.

For the second method, mesh movement, the number

of points in the computational domain remains fixed. To im-

prove the spatial accuracy of the solution, these points are
moved into regions where solution gradients are relatively

large. In general, this can be accomplished in two ways. The

first way models the mesh as a spring network, where points

are joined by linear springs with spring stiffnesses propor-
tional to solution gradients. The mesh is then allowed to

move into the relatively high gradient regions to produce ef-

fectively a locally finer mesh. The second way uses forcing

functions in a Poisson-equation grid generator to redistribute

points. Either method of mesh movement is easily imple-



mentedwithin existing solution algorithms because only the

locations of the existing mesh points are changed.

The final method of spatial adaptation is mesh enrich-

ment. In this method points are added to regions of relatively

large solution error by dividing locally the cells which make

up the mesh or by embedding finer meshes in these regions.
This method differs from mesh regeneration and movement

in that the mesh is made finer in local regions while the

global mesh topology remains the same. The method of
mesh enrichment also is generally regarded as having ad-

vantages over regeneration and movement, especially for

transient problems. 2 For example, a distinguishing feature
of mesh enrichment is that the original mesh is recovered

once a refined feature has passed. Another feature is that

the procedures are relatively fast compared to remeshing the
entire domain. This feature is important since spatial adapta-

tion is performed many times to track transient flow features.

For the Euler and Navier-Stokes equations, computa-

tional fluid dynamics algorithms are being developed based

on spatial adaptation methods. With these equations, rel-
atively large spatial dlscretization errors may be encoun-
tered with flow features such as shock waves, shear layers,

boundary layers, and expansion fans. These flow features
can be resolved more accurately using the adaptation meth-
ods mentioned above. Nakahashi and Deiwert, 3 for exam-

ple, have used tension and torsional springs to move the
mesh into regions where relatively large spatial discretiza-
tion errors occur. This mesh movement approach showed

considerable versatility for the problems treated. However,
various constants were needed to control orthogonality and

smoothness, and direct control of an optimal mesh adapta-

tion procedure generally was not possible. Further exam-

ples of spatial adaptation methods include the work of Usab
and Murman. 4 In Ref. 4, embedded meshes of quadrilateral

cells and nodes were used in regions of the mesh where

shock waves occurred. This approach improved the spatial

accuracy of the numerical method which resulted in highly
accurate solutions for steady flow problems. Dannenhoffer
and Baron s. 6 extended the work in this area using irregularly

shaped embedded regions, which were coupled to the base

mesh by a multiple-grid solution algorithm. Several other

examples of spatial adaptation include methods which use
flow solvers based on unstructured triangular and tetrahedral

meshes in two and three dimensions, respectively. Peraire

et al.7, s used mesh regeneration coupled with a finite ele-

ment solution algorithm to sharply capture shock waves and

complex shock structures. L0hner 9 developed a procedure

in three-dimensions to locally enrich the mesh for transient

flow problems by dividing tetrahedral elements which make

up a base mesh to capture shock waves. Further, in this

procedure, elements may be removed (coarsened) from the

mesh if they are not necessary to produce a given level of
spatial accuracy. More recently Kallinderis, Parthasarathy,

and Wu _° have developed and applied similar procedures.

With respect to solution algorithms based on unstruc-

tured meshes, the results published by the present authors

demonstrated that these algorithms produce steady and un-

steady solutions of comparable accuracy to results obtained
using structured-grid solution algorithms. H In Ref. 11 struc-

tured and unstructured mesh results were presented and com-
pared for steady and unsteady flows where no mesh adap-

tation was used. However, in Ref. 12, the present authors

demonstrated that solutions of higher spatial accuracy are

indeed possible for two-dimensional steady and unsteady

flows through the use of mesh adaptation. Therefore, the

purpose of this paper is to report on further modifications to

the three-dimensional, unstructured-grid, upwind-type Euler

code reported in Refs. 13, 14, and 15 to include mesh en-

richment and coarsening procedures for steady and unsteady
flow calculations.

The objectives of the research are as follows: (1) to

develop time-accurate mesh enrichment and coarsening pro-

cedures for spatial adaptation, (2) to test the procedures by

performing steady and unsteady calculations for a variety of

cases, (3) to determine the accuracy of the spatially adapted

solutions by making comparisons with published solutions

produced by alternative methods and existing experimental
data, and (4) to assess the efficiency of the spatially adapted

by making comparisons of required computer re-solutions

sources.

The

richment

scription

paper gives a detailed description of the mesh en-

and coarsening procedures and gives a brief de-
of the solution algorithm _3-t5 for completeness.

Steady and unsteady flow results are presented to demon-
strate an application of the adaptive mesh procedures. Steady

flow results are presented for the ONERA M6 wing to as-

sess the accuracy of the computed surface pressures by mak-

ing comparisons with experimental data. Unsteady flow re-

suits are presented in a three-dimensional simulation of a
one-dimensional shock-tube problem to demonstrate an ap-

plication of the enrichment and coarsening procedures for

transient flows and to assess the accuracy of the computed

results by making comparisons with the exact solution.

Upwind-T_pe Euler Solution AIsorithm

The Euler equations are solved using the three-

dimensional, unstructured-grid, upwind-type solution al-
gorithm developed by Batina) 3 The solution algorithm

of Ref. 13 was extended by the present authors t4' t5 for

time-accurate, unsteady flow calculations on a deforming

mesh. The algorithm, which is a cell-centered, finite-

volume scheme, uses upwind differencing based on flux-

vector splitting, 16 similar to upwind schemes developed for

use on structured meshes. The flux-split discretization ac-

counts for the local wave-propagation characteristics of the
flow and captures shock waves sharply with at most one grid

point within the shock structure. An additional advantage of
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using flux-splitting is that the discretization is naturally dis-

sipative and, consequently, does not require additional artifi-

cial dissipation terms or the adjustment of free parameters to

control the dissipation. However, in calculations involving a

higher-order upwind scheme such as this, oscillations in the

solution near shock waves are expected to occur. To elimi-
nate these oscillations, flux limiting usually is required. In

the present study, a continuously differentiable flux limiter

was employed.

The Euler equations are integrated in time using an

implicit time-integration scheme involving a Gauss-Seidel
relaxation procedure. 13 The relaxation procedure is imple-

mented by re-ordering the elements that make up the un-
structured mesh from upstream to downstream. The solu-

tion is obtained by sweeping two times through the mesh

as dictated by stability considerations. The first sweep is

performed in the direction from upstream to downstream,

and the second sweep Is from downstream to upstream. For

purely supersonic flows, the second sweep is unnecessary.
This relaxation scheme is stable for large time steps and

thus allows the selection of the step size based on the tem-

poral accuracy of the problem being considered, rather than
on the numerical stability of the algorithm. Consequently,

very large time steps may be used for rapid convergence to

steady state, and an appropriate step size may be selected for

unsteady cases, independent of numerical stability issues.

Spatial Adaptation Procedures

In this section, the spatial adaptation procedures are de-

scribed. These descriptions include detailed explanations of

the procedures used to detect flow features and the proce-
dures used to enrich and coarsen meshes of tetrahedra.

Flow Feature Detection

The first step of the spatial adaptation procedures is the

detection of regions of relatively large discretization error
so that the computational mesh can be locally enriched to

improve the spatial accuracy or coarsened locally to reduce
the computational costs. For numerical solutions of the

Euler equations, these regions generally occur near flow

features such as shock waves, stagnation points, slip lines,

and expansion fans. The dominant flow feature for the cases

considered in this study is a shock wave.

There are a number of flow parameters that can be
used for enrichment indicators based on the detection of

shock waves. Parameters such as density, pressure, or total

velocity are useful since these quantities are discontinuous
through shocks. For example, first or second, divided or

undivided differences in one of these parameters, similar to

the work by Dannenhoffer and Baron, 6 can be used to detect

shock waves. The enrichment indicator used in this study

was the magnitude of the density gradient IVp[ which is

often used to detect shock waves for steady flow problems.

Mesh Enrichment

Mesh enrichment of tetrahedral meshes is performed
by starting with a relatively coarse mesh of cells and then

subdividing these cells until a given level of spatial accuracy

has been obtained. To prevent cells from being enriched too
many times near flow discontinuities such as shock waves,

an upper bound is placed on the number of times a cell

can be divided. Presently, the upper bound is set before a

calculation is performed where the upper bound is usually
constrained by the computer memory available. For transient

problems the mesh enrichment procedure may be performed

at each time step of the integration of the governing flow
equations or it may be performed once every set number of
time steps.

There are a number of ways to subdivide a tetrahedral

cell. For example, a node could be added at the centroid

of a cell and subdivided accordingly. This way, however,

is not appealing because it often produces irregular cells,

which tend to have an adverse effect on the accuracy of the

solution algorithm. Another way is to add nodes at arbitrary

locations along the edges of a cell. This is the approach

taken in this study, but for convenience and to maintain

regular cells, the nodes are added at the midpoints of the
edges of the cells.

Mesh enrichment is performed by using the enrichment
indicator to determine if a cell is to be subdivided into

smaller cells. To accomplish this, the enrichment indicator

is computed for each cell and compared with a threshold
value to determine whether a cell should be subdivided. In

this study, the threshold value is set before the calculation

is performed. If the threshold is exceeded, a new node is

created at the midpoint of each edge of the tetrahedral cell,
and the cell is subdivided into eight smaller cells. Special

care must be taken, however, when an edge that is to be

bisected lies on a boundary of the mesh, since the midpoint

of the edge does not generally lie on the boundary, In this

case, the location of the new node is determined by using
a spline of the boundary coordinates. Further, the values

of the flow variables for the new cells are determined by a

linear interpolation of the conserved variables located at the

nodes of the original cells.

For a given tetrahedral cell to be enriched, either one

edge, three edges (all part of the same triangular face), or

all six edges are bisected. In the event that only two edges

are marked to be bisected and they are on the same face of

the cell, the third edge of the face is automatically bisected
to prevent the creation of highly skewed or stretched cells.

Similarly, if four or five edges of the cell are marked to

be bisected, the remaining edges are bisected and the cell

is fully enriched. Each time the mesh is enriched, a cell

may be divided in one of three ways. The first way, shown



(a) (b) (c)

Fig. 1 Diagramof atype-8elementenrichment.

(a) (b) (c)

Fig. 2 Diagramof atype-2elementenrichment.

(a) (b) (c)

Fig. 3 Diagram of a type-4 element enrichment.

in Fig. 1, results when all six edges of a cell have been
marked to be bisected. In this situation the cell is divided

into eight new cells where the vertices of the inner cells are,

in general, midpoints of edges that make up the original cell.
The original cell is thus referred to as a type-8 element since

after enrichment it becomes eight new tetrahedral cells. It

should be noted that this way of subdividing a tetrahedron is

not unique because there are three possible choices for the

orientation of the inner diagonal edge that passes through the

original cell. In the procedures, the orientation of the inner
diagonal is based solely on the numbering of the nodes for

the original cell being enriched. The second way, shown

in Fig. 2, occurs if only one edge of the original cell is
marked to be bisected. In this situation, the marked edge

is bisected, and two new cells are formed. The original

cell is thus referred to as a type-2 transition element since
after enrichment it becomes two new cells. The third and

final way, shown in Fig. 3, occurs if all three edges of a

single face of the base cell are marked to be bisected. In

this situation, the marked edges are bisected, and four new
cells are formed. The original cell is thus referred to as a

type-4 transition element since after enrichment it becomes
four new cells.

New cells formed from a type-8 element may be en-

riched further. However, to prevent highly stretched cells,

type-2 or typed transition elements are restricted from being
divided further as indicated in Figs. 4 and 5. For cells from a

type-2 transition element, if any of the nine edges that make

up the two new cells are marked for enrichment, the original

cell is made into a type-8 element as shown in Fig. 4. If in
addition to this, either or both of the bottom two edges are

marked (the lower left, right, or both), cells of the type-8 el-

Fig. 4

type-2 type-8
element element

Diagram illustrating details of further

enrichment of type-2 transition elements.

type-4 type-8
elen_nt element

Fig. 5 Diagram illustrating details of further

enrichment of type-4 transition elements.

ement are further enriched accordingly, as shown in Fig. 4.

Similarly for cells from a type-4 transition element' if any

of the fifteen edges that make up the four cells are marked

to be bisected, the original cell is also made into a type-8

element as shown in Fig. 5. If further, any edge that is part
of the type-4 transition face is marked to be bisected, cells

of the type-8 element are additionally enriched, as shown in

Fig. 5. The type-4 transition face has nine edges that may

be bisected further. If there is not a restriction on the edges

marked to be bisected, a total of 512 permutations of further

enrichment could result. However, since a triangular face

of a type-4 transition element is prevented from having only
two of its three edges marked for bisection, the total num-

ber of possible permutations is reduced to 89. Eliminating

permutations that are similar when rotated results in the 33

enriched cells shown in Fig. 5.



(a)type-8elementcoarsening.

(b)type-4transitionelementcoarsening.

(c)type-2transitionelementcoarsening.

Fig.6 Diagramsillustratingmeshcoarseningpossibilities.

Mesh Coarsening

Mesh coarsening of tetrahedral meshes is performed by

removing added nodes and cells from previously enriched
meshes to delete them from local regions of the mesh where

certain flow features are no longer present. This procedure

is necessary to adapt meshes to the numerical solution of the

governing flow equations in order to minimize computational
cost. Candidate cells for removal are cells that came from

type-2, type-4, or type-8 elements and were marked for
removal. Each time the mesh is coarsened, cells and nodes

may be removed in one of several ways as shown in Fig. 6.

For a type-8 element, three, five, or six nodes may be
removed resulting in a type-4, a type-2, or an original cell,

respectively (Fig. 6(a)). Similarly, if two of the three nodes

that form the inner triangle of the face of a type-4 element

are candidate nodes, the two nodes are removed and a type-
2 element is formed as shown in Fig. 6(b). Likewise, if all

three nodes that form the inner triangle of the face of a type-
4 element are candidate nodes, the three nodes are removed

and the one original cell that was divided previously into

four remains (Fig. 6(b)). However, if only one of the three
nodes that form the inner triangle of the subdivided face of

a type-4 element is a candidate node then nothing is done.

For a type-2 element there is only one node that may be
removed which is the midpoint of a previously bisected edge.

Removal of this node leaves only the cell that was divided

originally into two as shown in Fig. 6(c). It should be noted
that the mesh cannot become coarser than the original mesh.

Results and Discussion

Adaptive mesh results are presented in this section

for a test case involving a simulated flow field using a

mesh generated inside a cube, an ONERA M6 wing, and
a three-dimensional simulation of a one-dimensional shock-

tube problem. The results are used to assess the spatial

adaptation procedures in three dimensions. The accuracy

of the results are determined by making comparisons with

Fig. 7 Partial view of the surface of the original coarse

mesh used in test case of the spatial adaptation
procedures (1,805 nodes, 8,557 tetrahedra).

results from alternative methods and available experimental
data.

Test Case for the 3D Adaptive Mesh Procedures

To demonstrate the spatial adaptation procedures in
three-dimensions a test case was performed. The test case

was devised to assess newly developed procedures and data

structures implemented within the mesh enrichment and

coarsening procedures. The test case involves a mesh gen-

erated inside a unit cube, where a partial view of the surface

mesh is shown in Fig. 7. The mesh was generated using the
advancing front mesh generation package, VGRID3D. 17 In

Fig. 7 three sides of the surface mesh have been removed
so that the interior of the mesh can be seen. The totai mesh

contains 1,805 nodes and 8,557 tetrahedra and serves as a

starting mesh for the adaptive mesh procedures.

The test case simulates an unsteady problem to demon-

strate the mesh coarsening procedures. This case involves

subdividing cells in the vicinity of the surface of a sphere,

were the radius r of the sphere is increased with time at a

constant rate. The equation for the surface of the sphere is
given by

x2q_y2.1_z 2 : r2 (1)

where the origin of the sphere is the corner of the mesh.

This equation is used to specify values of a field variable,

_p, for each cell in the mesh. For example, the value
of _b for a cell is zero if the centroid of the cell lies

within (z 2 + y2 + z 2 < r2) the sphere and the value of

_p for a cell is one if the centroid of the cell lies outside

(x2 + y2 + z 2 > r2) the sphere. These values of _b are

used to compute the magnitude of the gradient of _b for

5



i
r = 0.50 (23,120 nodes, 129,795 tetrahedra).

r = 0.75 (49,335 nodes, 281,820 tetrahedra).

r = 1.00 (85,462 nodes, 489,369 tetrahedra).

Fig. 8 Sequence of instantaneous surface meshes for the

unsteady test case using three levels of enrichment.

Number
of

Cells

800000

600000

400000

20OO0O

+ 1 Level
---e-- 2 Levels

3 Levels

0

0.0 0.5 1.0 1.5 2.0

Radius

Fig. 9 Variation of the number of tetralaedral cells in
the mesh for the unsteady test case using 1,

2, and 3 levels of enrichment.

each cell in the mesh, where the magnitude of V_b is
used as the enrichment indicator. For the test case, three

calculations were performed allowing one, two, and three

levels of enrichment. For each calculation the spherical
wave propagates in increments of Ar = 0.025 of the radius

for every time step and the calculation was continued until

the radius r was 2.0. The sequence of surface meshes for the
third calculation with three levels of enrichment is shown in

Fig. 8 at three moments in time corresponding to a radius
r of 0.50, 0.75, and 1.00. In this figure the surface meshes

sharply define the spherical wave yet the adapted regions

transition smoothly to the coarser regions of the mesh. A

plot of the variation of the number of tetrahedral cells in

the mesh versus the radius of the spherical wave is shown

in Fig. 9 for the three calculations performed. In each
calculation the number of cells in the mesh varies smoothly

as the spherical wave propagates through the mesh. This

figure illustrates the rapid increase in the number of cells in
the mesh as the enrichment levels are increased, which may

be surprising for such a simple test case.

ONERA M6 Win_

The ONERA M6 wing was selected to furl.her assess

the adaptive mesh procedures in three dimensions. The ac-

curacy of the adapted mesh results are assessed by making
comparisons with experimental data and by making com-

parisons with results obtained from other unstructured-grid

Euler codes. The M6 wing has an aspect ratio of 3.8, a

leading edge sweep angle of 30*, and a taper ratio of 0.56.
The airfoil section is the ONERA D airfoil, which is a sym-

metric 10% maximum thickness-to-chord ratio conventional

section. The wing tip is rounded and is defined by a half

body of revolution of the airfoil section. This wing has

been widely studied and results have been obtained using
many flow solvers on both structured ts and unstructured 19-21

meshes. A steady flow calculation was performed at a

6
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Fig. 11 Steady-state convergence history for the ONERA

M6 wing at Moo = 0.84 and ao = 3.060
using the adaptive mesh procedures.

free.stream Mach number of 0.84 and an angle of attack

of 3.06 ° . For this case, the starting mesh and the spatially

adapted meshes are presented along with the corresponding

density contour lines. Additionally, surface pressures were

obtained for comparison with experimental data reported by
Schmidt and Charpin. 22

The mesh about the ONERA M6 wing configuration

was generated using VGRID3D. The mesh extends 2½ wing

semispans from the symmetry plane in the span direction.

Also, the mesh extends 6½ root chordlengths above/below

the wing surface as well as 6½ root chordlengths upstream
and 10 root chordlengths downstream of the wing to rectan-

(b) Two enrichment levels.

Fig. 12 Upper and lower surface meshes of the ONERA

M6 wing for the original and adapted meshes.

gular outer boundaries. The complete coarse mesh for the
M6 wing contains 8,824 nodes and 46,516 tetrahedral cells.

A partial view of the surface mesh for the symmetry plane

and wing is shown in Fig. 10.

The calculation was performedusing implicit time inte-

gration at a CFL number of 100,000. The final solution was

obtained by adapting the mesh to the magnitude of the den-

sity gradient every 300 iterations for the first 1,500 iterations
and then marching the solution an additional 300 iterations

on the final adapted mesh. Also, the adaptive mesh proce-

dures allowed only one level of enrichment during the first

900 iterations, and two levels were allowed thereafter. The

convergence history for the calculation is shown in Fig. 11

where the L2-norm of the density residual is plotted versus

the CPU time in hours. In Fig. 11 the spikes in the L2-norm

of the density residual mark the iterations at which spatial

adaptation was performed.

Figure 12 shows the upper and lower surface meshes

for the original starting mesh and the final adapted mesh
using two levels of enrichment. A summary of the sizes

of the original and adapted meshes are given in Table 1.
The information in the table consists of the total number of
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upper su_(a_e) Original mesh tower surface

(b) TWo enrichment levels.

Fig. 13 Upper and lower surface density contour
lines (Ap = 0.025) for the ON_ M6 wing

at M_ = 0.84 and _o = 3.06 ° using the

original and adapted meshes.

cells, nodes, boundary faces, wing boundary faces, and wing
boundary nodes for each mesh. Notice in Table 1 that after
one level of enrichment, the number of cells in the mesh is

approximately twice as large as the number of cells in the

original mesh. After two levels of enrichment, the mesh is

Comparisons of the ONERA M6 wing meshes.

Original One TWo
Mesh Level Levels

Table 1

Number of Cells 46,516 105,876 352,417

Number of Nodes 8,824 19,728 63,855

Number of Boundary 4,190 7,606 17,362
Faces

Number of Wing 2,792 6,048 15,578
Boundary Faces

Number of Wing 1,419 3,052 7,822
Boundary Nodes

Fig. 14 Partial view of the adapted surface mesh of

the symmetry plane and the ONERA M6

wing at Mc¢ = 0.84 and _o = 3.06 °.

7.6 times larger. This increase in the number of cells is sig-

nificant since it directly affects the computational resources

required to perform a given calculation using the adapted
meshes. Figure 13 shows the surface density contour lines

on the original and adapted meshes using an increment of

Ap = 0.025. In Figs. 12 and 13 the upper surface is shown

to the left and the lower surface is shown to the right. The

upper surface contours (left part of Fig. 13) clearly show

the lambda-shaped shock pattern formed by the two inboard

shocks that coalesce near 87% semispan and then separate
just outboard of 95% semispan (shown clearly for two levels

of enrichment). The forward shock of the two shock region

is a supersonic to supersonic shock. The aft shock of the two
shock region is a supersonic to subsonic shock. The lower

surface contours (right part of figure) indicate that there is

little spanwise variation in density. A comparison of the two

sets of contour lines reveals a considerable improvement in

the resolution of the shocks when spatial adaptation is used.

The meshes for the corresponding surface density contours

show that points were clustered in the shock regions to pro-
duce shock waves that are spatially sharp. Also, points were

clustered near the leading edge to improve the accuracy of
this high gradient region. A partial view of the surface mesh

and density contour lines for the symmetry plane and wing
are shown in Figs. 14 and 15. In Fig. 14 the mesh in the

symmetry plane gives an indication of the mesh spacing off
of the surface of the wing. Similarly, in Fig 15 the con-

tour lines give an indication of the spatial resolution of the

solution off of the surface of the wing.

To assess the accuracy of the results, the calculated sur-

face pressure coefficients are compared to the experimental

data at six semispan stations for the original and adapted
meshes. The semispan stations are at r/= 0.20, 0.44, 0.65,

8



Fig.15 Partial view of the surface density contour lines

(Ap = 0.025) on the symmetry plane and on the

ONERA M6 wing at Moo = 0.84 and c_o = 3.06*.

0.80, 0.90, and 0.95. Here the upwind-biased flow variables
of surface triangles, with a common edge along the semis-

pan station, are interpolated to the edge to determine the

surface pressures. The comparisons of surface pressures are

shown in Figs. 16 and 17 for the original and the adapted

mesh involving two levels of enrichment. In these figures

the calculated Euler results are given by solid curves where

plus symbols have been used to mark the interpolated values

along the semispan stations. The experimental data is de-

noted by circle and square symbols representing upper and
lower surface pressure coefficient data. A comparison of

the calculated surface pressures in Figs. 16 and 17 shows an

improvement using the adapted mesh (Fig. 17), especially

on the upper surface near the leading edge where the suc-

tion peak was poorly predicted in Fig. 16 using the coarser

mesh. For Fig. 17 at r/= 0.20 there are two shock waves on

the upper surface. The forward shock is well predicted and

agrees well with the data. The aft shock wave is too strong

and located too far back on the wing when compared with
the data. This however is consistent with other inviscid flow
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Fig. 16 Comparison of calculated and experimental values
of pressure coefficient computed using the

original coarse mesh for the ONERA M6

wing at Moo = 0,84 and s0 = 3.06*.
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Fig. 17 Comparison of calculated and experimental values

of pressure coefficient computed using the

adapted mesh (2 levels) for the ONERA M6
wing at Moo = 0.84 and so = 3.06*.



calculationsforthiscase. At r/= 0.44 the forward shock has

moved aft and the aft shock has moved forward. Again the

forward shock wave is well predicted and the aft shock is

slightly strong in comparison with the data. At r/= 0.65 the
forward shock is near 19% chord and the aft shock wave is

near 50% chord. Both shock waves are well predicted, and

the pressure level between the two shock waves agrees well

with the data. At r/= 0.80 the shock waves have begun to
coalesce near 30% chord. A feature of this data worth not-

ing is that the spatial adaptation procedures have helped to

clearly define the two shock waves at r/= 0.80. Calculations

by other researchers 18-2° have failed to isolate the two shock

waves at this semi-span location mainly due to the coarsness

of the meshes used. At 77= 0.90 the two shock waves have

merged to form a single strong shock near 30% chord. The

shock wave is sharply captured with one interior grid point,

which is common for upwind schemes of this type. Finally,

at ,7 = 0.95 the upper surface pressure results show a strong
shock slightly aft of the experimental data. Also, just aft

of the leading edge, the upper surface results slightly un-

derpredict the data. In general the lower surface pressure
coefficients agree well with the data at all semispan stations.

The computed results are further assessed by comparing

the lift coefficients obtained using the original mesh and the

adapted mesh (two levels of enrichment) with those reported

in Refs. 20, 23, and 24. This comparison is shown in
Table 2, where the lift coefficient in Ref. 20 was computed

on a mesh with 53,989 nodes and 288,170 cells, the lift

coefficient in Ref. 23 was computed on a mesh with 16,984
nodes and 231,507 cells, and the lift coefficient in Ref. 24

was computed on a mesh with 173,412 nodes and 1,013,718
cells. For these values of lift coefficient a reference area of

Sr_/ = 0.5255 was used. The table shows good agreement
between the lift on the final adapted mesh (two levels) and

the lift obtained using the other unstructured Euler solvers

giving confidence in the adapted mesh solution.

The calculation for the final adapted mesh solution was

run for 1,800 iterations and required approximately 12.5

hours of CPU time and 125mw of memory on the Cray-

2 computer at the NAS facility located at the NASA Ames
Research Center.

Table 2 Comparisons of lift coefficients for the ONERA
M6 wing at Moo = 0.84 and O_o= 3.06*.

Original Two Ref. Ref. Ref.
Mesh Levels 20 23 24

LiftCoef. 0.2827 0.2901 0.2923 0.2911 0.2901

Shock-Tube Problem

An unsteady one-dimensional shock-tube problem was
used to evaluate the accuracy and efficiency of the spatial

adaptation procedures in three-dimensions. The shock-tube

problem is illustrated in Fig. 18 where a diaphragm sepa-

(1)lush prcmure _l (4) Low pre_ure

i_nphrallm

P4

t

................................";..................................l.......r 'i ...........iii ! 1
Fig. 18 Illustration of a shock-tube problem.

rates a high pressure (compression) chamber (1) and a low

pressure (expansion) chamber (4). Initially the pressure dis-
tribution in the shock-tube is an ideal "step". At the instant

the diaphragm bursts the initial pressure "step" separates
into a shock wave, which propagates to the right into the

low pressure chamber, and an expansion fan, which propa-
gates to the left into the high pressure chamber. The region

traversed by the shock (3) and the region traversed by the
expansion fan (2) is separated by a contact surface. Each in-

terface between the four regions moves at a constant speed
as shown in Fig. 18.

The shock-tube problem provides a good test case for

the adaptive mesh procedures since the flow contains many
features expected to occur in transient problems such as a

moving shock wave, an expansion fan, and a contact surface.

Also, the exact solution z5 is available for comparison, and

the computational resources for this problem are relatively

small. The problem is a challenging one for the spatial

adaptation procedures since all the flow features must be

tracked accurately in time as the solution progresses.

The test case considered involves air at the same tem-

perature in the low and high pressure chambers and a di-

aphragm pressure ratio of five. The initial values of the

primitive variables on each side of the diaphragm are given

below in Eq. 2.

P__.z: 5
P4

Ul --_ t)l _-- Wl _ 0
(2)

tt4 ---_t)4 ---- W4 _ 0

P..2.1= 5
P4

The calculations were performed on a coarse mesh, within

parallelepiped boundaries, of unit length and with width and
height that is four percent of the length of the tube. The

mesh was generated using the VGRID3D mesh generator.

Figure 19 shows the surface mesh for the parailelepiped.
The total mesh contains 1,800 tetrahedra and 562 nodes.

The first calculation for the shock-tube problem was
performed on the coarse mesh to obtain a solution for com-

parison with the exact solution. The coarse mesh result

10



Fig. 19 Surface mesh for the parallelepiped.

also provides a solution for comparison with the spatially

adapted results. The solution was obtained using implicit
time-marching with a nondimensional time step of 0.001.

The calculated density profiles at three moments in time, 0.1,

0.2, and 0.3 are shown in Fig. 20. These profiles were ob-

tained by sorting all 1,800 cell-centered values of the prim-

itive variables according to their x-coordinate locations and

plotting every other point. Since the three-dimensional so-

lution is plotted as a function of the x-coordinate there may

be a variation of the solution in the y- and z-coordinate di-

rections. As the solution in Fig. 20 progresses in time, the

expansion fan spreads and moves to the left while the shock,
followed by the contact surface, moves to the right. Figure

21 shows the surface density contour lines at the same three

moments in time. The second calculation used the spatial

adaptation procedures starting with the coarse mesh of the

first calculation. The mesh was locally pre-embedded about

the initial pressure discontinuity for two levels of enrichment
in order for the initial discontinuity to be sharply defined.

The solution was marched in time for 3,000 time steps and

the mesh was adapted to the magnitude of the density gradi-
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Fig. 21

p
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i ! i a i 0.o

Surface density contour lines (Ap = 0.0067) for a

shock-tube for a sequence of times (0.1, 0.2,

0.3) using the original coarse mesh.

ent once every 20 time steps using a threshold value of 1.0.

During the course of the calculation, mesh refinement was

restricted to two levels of enrichment. Figure 22 shows

the resulting density profiles using spatial adaptation for the

same three moments in time that were shown previously.
Similar to the previous results, these profiles were obtained

by sorting all the ceil-centered values of the primitive vari-

ables according to their x-coordinate locations and plotting
every 20th point. In this figure the amount of adaptation can

be seen in the distribution of the calculated data throughout

the tube, where the majority of the cells are concentrated in

the regions of the expansion fan, the contact surface, and the
shock wave. The concentration of cells can be seen more

___ _
Ctimasted

Ume - 0.1 '_

i A I I

1.2

1.0

0.6P 0.6

ttme-0.3 _k_

I I I | I

0.2 0.4 0.6 O_ 1.0

X

Fig. 20 Comparison of calculated and exact density

profiles in a shock-tube for a sequence of

times (0.1, 0.2, 0.3) on the original coarse

mesh (every other point plotted).
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Fig. 22 Comparison of calculated and exact density

profiles in a shock-tube for a sequence of

times (0.1, 0.2, 0.3) on the adapted mesh

(every 20th point plotted).
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time = O.

time =0._

Fig. 23 Surface mesh and density contour lines

(Ap = 0.0067) for a shock-tube for a sequence of
times (0.1, 0.2, 0.3) using an adapted mesh.

clearly in Fig. 23 where the surface mesh and surface density
contour lines are shown. The figure illustrates, by compar-

ison with Fig. 21, that the shock wave is sharply captured
using the spatial adaptation procedures. Figure 22 shows

good agreement in temporal and spatial accuracy with the

exact solution giving confidence in the adaptive mesh pro-

cedures. The shock-tube results obtained using the spatial

adaptation procedures required approximately 5.5 hours of
CPU time and 18.2row of memory on the Cray-2s computer

at NASA LaRC. Also, the spatial adaptation procedures con-

sumed approximately 20% of the total CPU time.

Concluding Remarks

Spatial adaptation procedures for the accurate and effi-
cient solution of steady and unsteady inviscid flow problems

were described. The adaptation procedures were developed

and implemented within a three-dimensional unstructured-

grid upwind-type Euler code. These procedures involve

mesh enrichment and mesh coarsening to either add points

in high gradient regions of the flow or remove points where

they are not needed, respectively, to produce solutions of
high spatial accuracy at minimal computational cost.

Steady and unsteady results were presented to demon-

strate applications of the spatial adaptation procedures to

three-dimensional problems. Steady transonic flow results

were obtained for the ONERA M6 wing to assess the ac-

curacy of the computed surface pressures by making com-

parisons with experimental data. The results obtained us-

ing spatial adaptation were found to be in good agreement
with the experimental data giving confidence in the mesh

enrichment and coarsening procedures. Unsteady flow re-
suits were obtained in a three-dimensional simulation of a

one-dimensional shock-tube problem to demonstrate an ap-

plication of the mesh enrichment and coarsening procedures

for a time-dependent problem. The accuracy of the com-

puted results was assessed by making comparisons with the

exact solution. Both the steady and unsteady solutions ob-

tained using spatial adaptation were shown to be of high

spatial accuracy, primarily in that the shock waves were

sharply captured.
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